Improving the functional properties of (K0.5Na0.5)NbO3 piezoceramics by acceptor doping

نویسنده

  • Xavier Vendrell
چکیده

ZrO2 and TiO2 modified lead-free (K0.5Na0.5)NbO3 (KNN) piezoelectric ceramics are prepared by conventional solid-state reaction. The effect of acceptor doping on structural and functional properties are investigated. A decrease in the Curie temperature and an increase in the dielectric constant values are observed when doping. More interestingly, an increase in the coercive field Ec and remanent polarization Pr is observed. The piezoelectric properties are greatly increased when doping with small concentrations dopants. ZrO2 doped ceramic exhibits good piezoelectric properties with piezoelectric coefficient d33=134 pC/N and electromechanical coupling factor kp=35%. It is verified that nonlinearity is significantly reduced. Thus, the creation of complex defects capable of pinning the domain wall motion is enhanced with doping, probably due to by the formation of oxygen vacancies. These results strongly suggest that compositional engineering using low concentrations of acceptor doping is a good means of improving the functional properties of KNN lead-free piezoceramic system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Processing Parameters on the Synthesis of (K0.5Na0.5)NbO3 Nanopowders by Reactive High-Energy Ball Milling Method

The effects of ball milling parameters, namely, the ball-to-powder mass ratio and milling speed, on the synthesis of (K0.5Na0.5)NbO3 nanopowders by high-energy ball milling method from a stoichiometric mixture containing Na2CO3, K2CO3, and Nb2O5 were investigated in this paper. The results indicated that the single crystalline phase of (K0.5Na0.5)NbO3 was received in as-milled samples synthesiz...

متن کامل

Effect of Calcination Kinetics and Microwave Sintering Parameters on Dielectric and Peizo-Electric Properties of(K0.5Na0.5) NBO3 Ceramics

An efficient solid-state approach was established to synthesize (K0.5Na0.5) NbO3 ceramics using calcination kinetics and microwave assisted sintering. Milling of carbonate and oxide raw materials were carried out for 15h to obtain homogeneous nano particles. The crystallite size of 5.30 nm was obtained for the KNN system after calcination through optimized parameters and observed to be stoichio...

متن کامل

Preparation and Characterization of Lead-Free (K0.5Na0.5)NbO3-LiNbO3 and (K0.5Na0.5)NbO3-LiTaO3 Ferroelectric Single Crystals

Lead-free (K0.5Na0.5)NbO3-LiNbO3 (KNN-LN) and (K0.5Na0.5)NbO3-LiTaO3 (KNN-LT) ferroelectric single crystals, with the dimensions of 11  11  5 mm and 5  5  3 mm, were grown successfully using the top-seeded solution growth (TSSG) method, respectively. The crystal structures were analyzed by means of X-ray diffraction, showing orthorhombic symmetry for KNN-LN single crystals and coexistence o...

متن کامل

Studying the Effects of Nano Sintering Additives on Microstructure and Electrical Properties of Potassium-Sodium Niobate Piezoceramics

In this paper, lead free (K0.48,Na0.52)NbO3 (KNN(48-52)) piezoelectric ceramics were made by conventional solid state sintering process. Additives of nano ZnO (n-ZnO), nano CuO (n-CuO) and nano SnO2 (n-SnO2) were used in order to decrease the sintering temperature, as well as modifying the dielectric, piezoelectric and ferroelectric propert...

متن کامل

Influence of Sintering Temperature on Densification, Structure and Microstructure of Li and Sb Co-Modified (K,Na)NbO3-Based Ceramics

Polycrystalline samples of Lead free (K0.5Na0.5)1−x(Li)x(Sb)x(Nb)1−xO3 ceramics with nominal compositions (x = 0.040 to 0.060) have been prepared by high temperature solid state reaction technique. X-ray diffraction (XRD) pattern shows that the crystal structure transforms from orthorhombic to tetragonal as Li and Sb content increases. Normal sintering process yield compounds with density ~98.2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015